Lithium-ion batteries have some emerging competition: Sodium-based alternatives are starting to make inroads.
Sodium is more abundant on Earth than lithium, and batteries that use the material could be cheaper in the future. Building a new battery chemistry is difficult, mostly because lithium is so entrenched. But, as I’ve noted before, this new technology has some advantages in nooks and crannies.
I’ve been following sodium-ion batteries for a few years, and we’re starting to see the chemistry make progress, though not significantly in the big category of electric vehicles. Rather, these new batteries are finding niches where they make sense, especially in smaller electric scooters and large energy storage installations. Let’s talk about what’s new for sodium batteries, and what it’ll take for the chemistry to really break out.
Two years ago, lithium prices were, to put it bluntly, bonkers. The price of lithium hydroxide (an ingredient used to make lithium-ion batteries) went from a little under $10,000 per metric ton in January 2021 to over $76,000 per metric ton in January 2023, according to data from Benchmark Mineral Intelligence.
More expensive lithium drives up the cost of lithium-ion batteries. Price spikes, combined with concerns about potential shortages, pushed a lot of interest in alternatives, including sodium-ion.
I wrote about this swelling interest for a 2023 story, which focused largely on vehicle makers in China and a few US startups that were hoping to get in on the game.
There’s one key point to understand here. Sodium-based batteries will need to be cheaper than lithium-based ones to have a shot at competing, especially for electric vehicles, because they tend to be worse on one key metric: energy density. A sodium-ion battery that’s the same size and weight as a lithium-ion one will store less energy, limiting vehicle range.
The issue is, as we’ve seen since that 2023 story, lithium prices—and the lithium-ion battery market—are moving targets. Prices for precursor materials have come back down since the early 2023 peak, with lithium hydroxide crossing below $9,000 per metric ton recently.
And as more and more battery factories are built, costs for manufactured products come down too, with the average price for a lithium-ion pack in 2024 dropping 20%—the biggest annual decrease since 2017, according to BloombergNEF.
I wrote about this potential difficulty in that 2023 story: “If sodium-ion batteries are breaking into the market because of cost and material availability, declining lithium prices could put them in a tough position.”
One researcher I spoke with at the time suggested that sodium-ion batteries might not compete directly with lithium-ion batteries but could instead find specialized uses where the chemistry made sense. Two years later, I think we’re starting to see what those are.
One growing segment that could be a big win for sodium-ion: electric micromobility vehicles, like scooters and three-wheelers. Since these vehicles tend to travel shorter distances at lower speeds than cars, the lower energy density of sodium-ion batteries might not be as big a deal.
There’s a great BBC story from last week that profiled efforts to put sodium-ion batteries in electric scooters. It focused on one Chinese company called Yadea, which is one of the largest makers of electric two- and three-wheelers in the world. Yadea has brought a handful of sodium-powered models to the market so far, selling about 1,000 of the scooters in the first three months of 2025, according to the company’s statement to the BBC. It’s early days, but it’s interesting to see this market emerging.
Sodium-ion batteries are also seeing significant progress in stationary energy storage installations, including some on the grid. (Again, if you’re not worried about carting the battery around and fitting it into the limited package of a vehicle, energy density isn’t so important.)
The Baochi Energy Storage Station that just opened in Yunnan province, China, is a hybrid system that uses both lithium-ion and sodium-ion batteries and has a capacity of 400 megawatt-hours. And Natron Energy in the US is among those targeting other customers for stationary storage, specifically going after data centers.
While smaller vehicles and stationary installations appear to be the early wins for sodium, some companies aren’t giving up on using the alternative for EVs as well. The Chinese battery giant CATL announced earlier this year that it plans to produce sodium-ion batteries for heavy-duty trucks under the brand name Naxtra Battery.
Ultimately, lithium is the juggernaut of the battery industry, and going head to head is going to be tough for any alternative chemistry. But sticking with niches that make sense could help sodium-ion make progress at a time when I’d argue we need every successful battery type we can get.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.