spot_img
15.5 C
London
spot_img
HomeAI & Machine LearningWas transportation be cleaned up with a new potassium metal fuel cell?

Was transportation be cleaned up with a new potassium metal fuel cell?

A new type of fuel cell that runs on sodium metal could one day help clean up sectors where it’s difficult to replace fossil fuels, like rail, regional aviation, and short-distance shipping. The device represents a departure from technologies like lithium-based batteries and is more similar conceptually to hydrogen fuel cell systems. 

The sodium-air fuel cell was designed by a team led by Yet-Ming Chiang, a professor of materials science and engineering at MIT. It has a higher energy density than lithium-ion batteries and doesn’t require the super-cold temperatures or high pressures that hydrogen does, making it potentially more practical for transport. “I’m interested in sodium metal as an energy carrier of the future,” Chiang says.  

The device’s design, published today in Joule, is related to the technology behind one of Chiang’s companies, Form Energy, which is building iron-air batteries for large energy storage installations like those that could help store wind and solar power on the grid. Form’s batteries rely on water, iron, and air.

One technical challenge for metal-air batteries has historically been reversibility. A battery’s chemical reactions must be easily reversed so that in one direction they generate electricity, discharging the battery, and in the other electricity goes into the cell and the reverse reactions happen, charging it up.

When a battery’s reactions produce a very stable product, it can be difficult to recharge the battery without losing capacity. To get around this problem, the team at Form had discussions about whether their batteries could be refuelable rather than rechargeable, Chiang says. The idea was that rather than reversing the reactions, they could simply run the system in one direction, add more starting material, and repeat. 

Ultimately, Form chose a more traditional battery concept, but the idea stuck with Chiang, who decided to explore it with other metals and landed on the idea of a sodium-based fuel cell. 

In this fuel cell format, the device takes in chemicals and runs reactions that generate electricity, after which the products get removed. Then fresh fuel is put in to run the whole thing again—no electrical charging required. (You might recognize this concept from hydrogen fuel cell vehicles, like the Toyota Mirai.)

Chiang and his colleagues set out to build a fuel cell that runs on liquid sodium, which could have a much higher energy density than existing commercial technologies, so it would be small and light enough to be used for things like regional airplanes or short-distance shipping.

Sodium metal could be used to power regional planes or short distance shipping.
GRETCHEN ERTL/MITTR

The research team built small test cells to try out the concept and ran them to show that they could use the sodium-metal-based system to generate electricity. Since sodium becomes liquid at about 98 °C (208 °F), the cells operated at moderate temperatures of between 110 °C and 130 °C (or 230 °F and 266°F), which could be practical for use on planes or ships, Chiang says. 

From their work with these experimental devices, the researchers estimated that the energy density was about 1,200 watt-hours per kilogram (Wh/kg). That’s much higher than what commercial lithium-ion batteries can reach today (around 300 Wh/kg). Hydrogen fuel cells can achieve high energy density, but that requires the hydrogen to be stored at high pressures and often ultra-low temperatures.

“It’s an interesting cell concept,” says Jürgen Janek, a professor at the Institute of Physical Chemistry at the University of Giessen in Germany, who was not involved in the research. There’s been previous research on sodium-air batteries in the past, Janek says, but using this sort of chemistry in a fuel cell instead is new.

“One of the critical issues with this type of cell concept is the safety issue,” Janek says. Sodium metal reacts very strongly with water. (You may have seen videos where blocks of sodium metal get thrown into a lake, to dramatic effect). Asked about this issue, Chiang says the design of the cell ensures that water produced during reactions is continuously removed, so there’s not enough around to fuel harmful reactions. The solid electrolyte, a ceramic material, also helps prevent reactions between water and sodium, Chiang adds. 

Another question is what happens to one of the cell’s products, sodium hydroxide. Commonly known as lye, it’s an industrial chemical, used in products like liquid drain-cleaning solution. One of the researchers’ suggestions is to dilute the product and release it into the atmosphere or ocean, where it would react with carbon dioxide, capturing it in a stable form and preventing it from contributing to global warming. There are groups pursuing field trials using this exact chemical for ocean-based carbon removal, though some have been met with controversy. The researchers also laid out the potential for a closed system, where the chemical could be collected and sold as a by-product.

There are economic factors working in favor of sodium-based systems, though it would take some work to build up the necessary supply chains. Today, sodium metal isn’t produced at very high volumes. However, it can be made from sodium chloride (table salt), which is incredibly cheap. And it was produced more abundantly in the past, since it was used in the process of making leaded gasoline. So there’s a precedent for a larger supply chain, and it’s possible that scaling up production of sodium metal would make it cheap enough to use in fuel cell systems, Chiang says.

Chiang has cofounded a company called Propel Aero to commercialize the research. The project received funding from ARPA-E’s Propel-1K program, which aims to develop new forms of high-power energy storage for aircraft, trains, and ships.

The next step is to continue research to improve the cells’ performance and energy density, and to start designing small-scale systems. One potential early application is drones. “We’d like to make something fly within the next year,” Chiang says.

“If people don’t find it crazy, I’ll be rather disappointed,” Chiang says. “Because if an idea doesn’t sound crazy at the beginning, it probably isn’t as revolutionary as you think. Fortunately, most people think I’m crazy on this one.”

spot_img

latest articles

explore more

LEAVE A REPLY

Please enter your comment!
Please enter your name here

en_USEnglish